И другие программы этой серии
Этот метод дает хорошие результаты при решении задач, описывающих колебательные системы с почти гармоническим выходным сигналом. При умеренно жестких системах дифференциальных уравнений может дать высокую точность решения.
• ode23tb – неявный метод Рунге–Кутта в начале решения и метод, использующий формулы «дифференцирования назад» 2-го порядка в последующем. Несмотря на сравнительно низкую точность, этот метод может оказаться более эффективным, чем ode15s.
• bvp4c – служит для проблемы граничных значений систем дифференциальных уравнений вида y’ = f(t,y), F(y(a), y(b),p) = 0 (полная форма системы уравнений Коши). Решаемые им задачи называют двухточечными краевыми задачами, поскольку решение ищется при задании граничных условий как в начале, так и в конце интервала решения.
• pdepe – служит для решения систем параболических и эллиптических дифференциальных уравнений в частных производных. Этот решатель введен в ядро системы для поддержки новых графических функций OpenGL. Пакет расширения Partial Differential Equations Toolbox содержит более мощные средства для решения дифференциальных уравнений этого класса.
Все решатели могут решать системы уравнений явного вида y’ = F(t, y), причем для решения жестких систем уравнений рекомендуется использовать только специальные решатели ode15s, ode23s, ode23t, ode23tb.
Решатели ode15s и ode23t способны найти корни дифференциально-алгебраических уравнений M(t)y’ = F(t, y), где M называется матрицей массы. Решатели
ode15s, ode23s, ode23t и ode23tb могут решать уравнения неявного вида М(t, y) y’ = F(t, y). И наконец, все решатели, за исключением ode23s, который требует постоянства матрицы массы, и bvp4c, могут находить корни матричного уравнения вида М(t, y) y’ = F(t, y). ode23tb, ode23s служат для решения жестких дифференциальных уравнений, ode15s – жестких дифференциальных и дифференциально-алгебраических уравнений, ode23t – умеренно жестких дифференциальных и дифференциально-алгебраических уравнений.
8.8.3.
Начало в части 1