И другие программы этой серии
Внимательный читатель может обнаружить ,что решение, выдаваемое функцией Minerr в рассматриваемом примере, не является единственным, поскольку множество пар значений (х,у) в равной степени минимизирует невязку данной системы уравнений и неравенств, Поэтому для различных начальных значений будут получаться разные решения, подобно тому, как разные решения выдаются функцией Find в случае бесконечного множества корней .Еще более опасен случай, когда имеются всего несколько локальных минимумов функции невязки. Тогда неудачно выбранное начальное приближение приведет к выдаче именно этого локального минимума, несмотря на то, что другой (глобальный) минимум невязки может удовлетворять системе гораздо лучше.
Поиск экстремума функции
Задачи поиска экстремума функции означают нахождение ее максимума(наибольшего значения) или минимума (наименьшего значения) в некоторой области определения ее аргументов. Ограничения значений аргументов, задающих эту область, как и прочие дополнительные условия, должны бытьопределены в виде системы неравенств и (или) уравнений. В таком случае говорят о задаче на условный экстремум.
Для решения задач поиска максимума и минимума в MathCAD имеются встроенные функции Minerr, Minimize И Maximize. Все они используют те же градиентные численные методы, что и функция Find для решения уравнений. Поэтому вы можете выбирать численный алгоритм минимизации изуже рассмотренных нами численных методов
Экстремум функции одной переменной
Поиск экстремума функции включает в себя задачи нахождения локального и глобального экстремума. Последние называют еще задачами оптимизации.Рассмотрим конкретный пример функции f(x), показанной графиком нарис.на интервале (-2,5). Она имеет глобальный максимум на левой границе интервала, глобальный минимум, локальный максимум, локальный минимум и локальный максимум на правой границе интервала (в порядке слева направо).
В MathCAD с помощью встроенных функций решается только задача поиск алокального экстремума. Чтобы найти глобальный максимум (или минимум),требуется либо сначала вычислить все их локальные значения и потом выбрать из них наибольший (наименьший), либо предварительно просканировать с некоторым шагом рассматриваемую область, чтобы выделить из нееподобласть наибольших (наименьших) значений функции и осуществить поиск глобального экстремума, уже находясь в его окрестности.