И другие программы этой серии
Аргумент span>0 указывает размер локальной области приближаемых данных (рекомендуемое начальное значение — 0,75).
Чем больше span, тем сильнее сказывается сглаживание данных. При больших span< эта функция приближается к regress(VX,VY,2).
MathCAD позволяет выполнять также МНОГОМЕРНУЮ регрессию, самый типичный случай которой — приближение трехмерных поверхностей. Их можно характеризовать массивом значений высот z, соответствующих двумерному массиву Мху координат точек (х, у) на горизонтальной плоскости.
Новых функций для этого не задано. Используются уже описанные функции в несколько иной форме:
Regress (Mxy, Vz, n) — возвращает вектор, запрашиваемый функцией interp (VS,Mxy,Vz,V) для вычисления многочлена п-й степени, который наилучшим образом приближает точки множества Мху и Vz. Мху — матрица mx2, содержащая координаты x и y.
Vz — m-мерный вектор, содержащий z-координат, соответствующих m точкам, указанным в Mxy;
loes(Mxy,Vz,span) — аналогична loes(VX,VY, span), но в многомерном случае;
interp (VS,Mxy,Vz,V) — возвращает значение z по заданным векторам VS (создается функциями regress или loess) и Мху, Vz и V (вектор координат х и у заданной точки, для которой находится z).
Функция для нелинейной регрессии общего вида.
Под нелинейной регрессией общего вида подразумевается нахождение вектора К параметров произвольной функции F(x,K1,K2,...,Kn), при котором обеспечивается минимальная среднеквадратичная погрешность приближения облака исходных точек.
Для проведения нелинейной регрессии общего вида используется функция genfit(VX, VY, VS, F). Эта функция возвращает вектор К параметров функции F, дающий минимальную среднеквадратичную погрешность приближения функцией F(x,Kl,K2,...,Kn) исходных данных.
F должен быть вектором с символьными элементами, содержащими уравнение исходной функции и ее производных по всем параметрам. Вектор VS должен содержать начальные значения элементов вектора К, необходимые для решения системы нелинейных уравнений регрессии итерационным методом.