И другие программы этой серии
Не рекомендуется пользоваться этой функцией, если степень полинома выше пятой-шестой, так как тогда трудно получить малую погрешность вычисления корней.
При решении систем нелинейных уравнений используется специальный вычислительный блок, открываемый служебным словом — директивой Given — и имеющий следующую структуру:
Given
Уравнения
Ограничительные условия
Выражения с функциями Find и Minerr
В блоке используется одна из следующих двух функций:
Find(vl, v2, ..., vn) — возвращает значение одной или ряда переменных для точного решения;
Minerr(vl, v2, ..., vn) — возвращает значение одной или ряда переменных для приближенного решения.
Между этими функциями существуют принципиальные различия. Первая функция используется, когда решение реально существует (хотя и не является аналитическим). Вторая функция пытается найти максимальное приближение даже к несуществующему решению путем минимизации среднеквадратичной погрешности решения.
При использовании функции Minerr для решения систем нелинейных уравнений надо проявлять известную осторожность и обязательно предусматривать проверку решений. Нередки случаи, когда решения могут оказаться ошибочными, чаще всего из-за того, что из нескольких корней система предлагает нереальный (или не представляющий интереса) корень. Полезно как можно точнее указывать начальные приближения к решению.
Решение одиночного дифференциального уравнения.
Для численного решения одиночного дифференциального уравнения в MathCAD имеется функция Odesolve, с помощью которой может быть решена как задача Коши для обыкновенного дифференциального уравнения, так и граничная задача. Эта функция входит в состав блока решения и сявляется его заключительным ключевым словом.
Odesolve(x,b,[step]) - Возвращает функцию, которая является решением дифференциального уравнения. Используется в блоке с оператором Given.
x - переменная интегрирования, действительное число
b - конечная точка отрезка интегрирования
step - величина шага по переменной интегрирования (необязательный аргумент)
Замечания:
Уравнение должно быть линейным относительно старшей производной.